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The genomes of four tapeworm species
reveal adaptations to parasitism
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Jianping Cai5, Federico Camicia6, Richard Clark1, Marcela Cucher6, Nishadi De Silva1, Tim A. Day7, Peter Deplazes8, Karel Estrada3,
Cecilia Fernández9, Peter W. H. Holland10, Junling Hou5, Songnian Hu11, Thomas Huckvale1, Stacy S. Hung12, Laura Kamenetzky6,
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Xuepeng Cai5, Xavier Soberón3,18, Peter D. Olson14, Juan P. Laclette4, Klaus Brehm13 & Matthew Berriman1

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here
we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis,
E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase
genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we
find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and
several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely
tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock
proteins and families of known antigens. We identify new potential drug targets, including some on which existing
pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed
treatments and control.

Echinococcosis (hydatid disease) and cysticercosis, caused by the pro-
liferation of larval tapeworms in vital organs1, are among the most
severe parasitic diseases in humans and account for 2 of the 17 neglected
tropical diseases prioritized by the World Health Organization2. Larval
tapeworms can persist asymptomatically in a human host for decades3,
eventually causing a spectrum of debilitating pathologies and death1.
When diagnosed, the disease is often at an advanced stage at which
surgery is no longer an option4. Tapeworm infections are highly pre-
valent worldwide5, and their human disease burden has been estimated
at 1 million disability-adjusted life years, comparable with African
trypanosomiasis, river blindness and dengue fever. Furthermore, cystic
echinococcosis in livestock causes an annual loss of US$2 billion6.

Tapeworms (Platyhelminthes, Cestoda) are passively transmitted
between hosts and parasitize virtually every vertebrate species7. Their
morphological adaptations to parasitism include the absence of a gut,
a head and light-sensing organs, and they possess a unique surface
(tegument) that is able to withstand host-stomach acid and bile but is
still penetrable enough to absorb nutrients7.

Tapeworms are the only one of three major groups of worms that
parasitize humans, the others being flukes (Trematoda) and round
worms (Nematoda), for which no genome sequence has been available
so far. Here we present a high-quality reference tapeworm genome of
a human-infective fox tapeworm Echinococcus multilocularis. We also
present the genomes of three other species, for comparison; E. granu-
losus (dog tapeworm), Taenia solium (pork tapeworm), both of which
infect humans, and Hymenolepis microstoma (a rodent tapeworm and
laboratory model for the human parasite Hymenolepis nana). We have
mined the genomes to provide a starting point for developing urgently
needed therapeutic measures against tapeworms and other parasitic
flatworms. Access to the complete genomes of several tapeworms will
accelerate the pace at which new tools and treatments to combat tape-
worm infections can be discovered.

The genomes and genes of tapeworms
The E. multilocularis genome assembly was finished manually (Sup-
plementary Information, section 2), producing a high-quality reference
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genome in which 89% of the sequence is contained in 9 chromo-
some scaffolds that have only 23 gaps (Supplementary Table 1.2).
One chromosome is complete from telomere to telomere, and 13 of
the expected 18 telomeres are joined to scaffolds (Fig. 1a). This quality
and completeness is comparable to that of the first publications of
Caenorhabditis elegans and Drosophila melanogaster genomes8,9.
The 115- to 141-megabase (Mb) nuclear tapeworm genomes were
sequenced using several high-throughput technologies (Supplemen-
tary Table 1.1). The tapeworm genomes are approximately one-third
of the size of the genome of their distant flatworm relative, the blood
fluke Schistosoma mansoni10, mainly because it has fewer repeats
(Supplementary Information, section 3). By sequencing several iso-
lates of E. multilocularis (Supplementary Table 3.2), we revealed tetra-
ploidy in protoscoleces of one isolate, and a trisomy of chromosome 9
(the smallest chromosome, and possibly the only one for which a
trisomy is tolerated) transiently exhibited in protoscoleces and meta-
cestodes from two different isolates (Fig. 1c, d and Supplementary Figs
3.1, 3.2 and 3.3), consistent with previous observations of karyotype
plasticity in flatworms11.

Aided by deep transcriptome sequencing from multiple life-cycle
stages, we identified 10,231 to 12,490 putative genes per genome (Sup-
plementary Table 5.5). Similar to the genome of S. mansoni12, distinct
‘micro-exon genes’ are present in tapeworm genomes, with multiple
internal exons that are small (typically less than 36 bases) and divisible
by 3 (Supplementary Information, section 5). To identify gene gain
and loss in tapeworms, orthologous relationships were predicted
between tapeworms and eight other species (Fig. 2). Although gene
order has been lost, ancient chromosomal synteny is preserved among
parasitic flatworms (Fig. 1b and Supplementary Table 7.3). Two chro-
mosomes in E. multilocularis (Fig. 1a, b) correspond to the S. mansoni Z
sex chromosome. Schistosomes are unusual among flatworms in that
they have sexual dimorphism, but how common ancestors of both
tapeworms and flukes evolved into female-heterogametic parasites, like
S. mansoni, remains to be elucidated.

Genome-wide identification of polycistrons in tapeworms shows
that there are 308 putative polycistrons in E. multilocularis, with the
largest containing 4 genes. The internal gene order within E. multilocu-
laris polycistrons is largely the same as in T. solium and H. microstoma
(Supplementary Table 6.5), and—to some extent—as in flukes; 39% of
S. mansoni orthologues of genes within E. multilocularis polycistrons
retain colinearity. Of these S. mansoni genes, 40% have transcriptome
evidence supporting their polycistronic transcription10, demonstrating
further that gene order in polycistrons is highly conserved over long evo-
lutionary time13 (P , 0.0001, Supplementary Information, section 6).

Polycistrons are resolved into individual coding transcripts using
spliced-leader trans-splicing, but spliced-leader trans-splicing also
occurs in genes outside of polycistrons. Using deep transcriptome
sequencing (RNA-seq) we found evidence of spliced-leader trans-
splicing in approximately 13% of E. multilocularis genes (Supplemen-
tary Table 6.2), less than the 70% observed in C. elegans14 and 58% in
a tunicate15.

Specialized metabolism and detoxification
The high-confidence gene sets reveal extensive reductions in overall
metabolic capability and an increased ability to absorb nutrients, com-
pared to that of other animals (Figs 2 and 3, and Supplementary
Information, section 9). Their main energy source, carbohydrates,
can be catabolized by aerobic respiration or by two complementary
anaerobic pathways; the lactate fermentation and malate dismuta-
tion pathways. The parasiticidal effects of mitochondrial fumarate
reductase inhibitors have been demonstrated in vitro, suggesting that
the malate dismutation pathway would be an effective target for the
development of novel therapeutics16.

Tapeworms, like flukes, lack the ability to synthesize fatty acids and
cholesterol de novo17,18. Instead, they scavenge essential fats from the
host using fatty acid transporters and lipid elongation enzymes (Sup-
plementary Table 9.2), as well as several tapeworm-specific gene families,
such as fatty acid binding protein (FABP) and the apolipoprotein
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Figure 1 | Genome of E. multilocularis. a, The
nine assembled chromosomes (Chr 1–Chr 9) of E.
multilocularis with telomeres (red dots). Physical
gaps in the sequence assembly (white boxes with
blue dot beneath) are bridged by optical map data.
Each colour segment is defined as an array of at
least three genes that each has a single orthologous
counterpart on one S. mansoni chromosome,
regardless of their locations on the chromosome.
b, One-to-one orthologues connecting E.
multilocularis and S. mansoni chromosomes.
c, Distribution of normalized genome coverage
on isolate GT10/2. Each horizontal line depicts
median coverage of 100-kb windows normalized
against the mean coverage for the genome (130|).
Even coverage was observed across the first eight
chromosomes, but 1.5| coverage of chromosome
9 indicates trisomy. Similar plots for other
isolates are shown in Supplementary Fig. 3.1.
d, Distribution of minor allele frequency (MAF)
of heterozygous sites in five isolates of
E. multilocularis (plot for individual isolates in
Supplementary Fig. 3.1), identified by mapping
sequencing reads against the assembled
chromosome consensus sequences. At each site,
the proportion of bases that disagree with the
reference is counted. For four isolates, the MAF
peaks at around 0.5, indicative of diploidy, whereas
JAVA05/1 peaks at 0.25, suggesting tetraploidy.
Chromosome 9 of GT10/2 is plotted separately
(marked by asterisk) from chromosomes 1 to 8,
and the MAF display a clear departure of 0.5 and
peaks around 0.33, consistent with a trisomy.
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antigen B (Supplementary Information, section 8). Uptake of fatty
acids seems to be crucial in Echinococcus spp. metacestodes, in which
both FABP and antigen B gene families are among the most highly
expressed genes19 (Supplementary Table 5.7). Tapeworms and flukes
have lost many genes associated with the peroxisome (Supplementary
Information, section 8), an organelle in which fatty acid oxidation
occurs, and may lack peroxisomes altogether, as seen in several other
parasites20.

Compared with other animals, S. mansoni has a reduced ability to
synthesize amino acids17. In tapeworms, this capacity is reduced
further, with serine and proline biosynthesis enzymes absent from
E. multilocularis (Fig. 3 and Supplementary Information, section 9).
Many enzymes in the molybdopterin biosynthesis pathway seemed to
be lost in tapeworms, along with enzymes that use molybdopterin as a
cofactor. The ability to utilize molybdenum in enzymatic reactions
was believed to be present in all animals21, but has been lost in some
eukaryotic parasites22.

Differences in the detoxification systems between tapeworms and
their mammalian hosts may be exploited for drug design (Sup-
plementary Information, section 9). We found that, like flukes23, tape-
worms typically have only one cytochrome P450 gene, suggesting that
their ability to oxidize many xenobiotics and steroids is substantially
lower than that of their hosts. Uniquely, tapeworms and flukes have
merged two key enzymatic functions for redox homeostasis in one
single enzyme: thioredoxin glutathione reductase (TGR). TGR is an
essential gene and validated drug target in flukes24. Downstream of
TGR we find an unexpected diversity of thioredoxins, glutaredoxins

and mu-class glutathione S-transferases (GSTs) (Supplementary
Table 9.3). The GST expansion suggests that tapeworms would be able
to water-solubilize and excrete a large range of hydrophobic com-
pounds, which may add complexity to the pharmacokinetics of drugs.

Homeobox gene loss
Homeobox genes are high-level transcription factors that are impli-
cated in the patterning of body plans in animals. Across parasitic
flatworms, the homeobox gene numbers are extensively reduced
(Supplementary Table 10.1). Most bilaterian invertebrates have a
conserved set of approximately 100 homeobox genes (for example,
92 conserved in C. elegans, 102 in D. melanogaster, and 133 in the
lancelet)25. Of the 96 homeobox gene families that are thought to have
existed at the origin of the Bilateria, 24 are not present in tapeworms
and flukes, and a further 10 were lost in tapeworms, making their
complement by far the most reduced of any studied bilaterian animal25.
Among the tapeworm-specific gene losses are gene families involved
in neural development (mnx, pax3/7, gbx, hbn and rax). This is some-
what surprising considering that tapeworms possess a well-developed
nervous system, albeit with reduced sensory input and cephalization.
Tapeworms also lack the ParaHox genes (gsx, pdx, cdx) ancestrally
involved in specification of a through-gut26,27, although these seem to
have been lost before the tapeworm gut was lost. Other conserved genes
found in bilaterian developmental pathways such as Hedgehog and
Notch were found to be present and intact, although the Wnt com-
plement is greatly reduced compared to the ancestral (spiralian)
complement of 12 Wnt ligands28 (Supplementary Table 10.2).
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Figure 2 | Evolution of tapeworm parasitism.
Phylogeny of the main branches of Bilateria;
Ecdysozoa (including fruitflies and nematodes),
Deuterostomia (including lancelet, zebrafish, mice
and humans), and Lophotrochozoans (including
Platyhelminthes (flatworms)) (based on phylogeny
in Supplementary Fig. 7.1). The gains and losses of
life-cycle traits for these parasitic flatworms include
the evolution of endoparasitism (a), passive
transmission between hosts (b), acquisition of
vertebrate intermediate host (c), ability to
proliferate asexually in intermediate host (d).
Morphological traits that have evolved include the
loss of eye cups (e), gain of neodermatan syncytial
epithelia (f), loss of gut (g), segmentation of body
plan (h), and changes in the laminated layer (to
contain specialized apomucins; i). Gains and losses
of genomic traits include spliced-leader trans-
splicing (1), loss of Wnt genes (2), loss of NEK
kinases, fatty acid biosynthesis and ParaHox genes
(3), anaerobic metabolic ability through the malate
dismutation/rodhoquinone pathway, merger of
glutaredoxin and thioredoxin reductase to
thioredoxin glutathione reductase (TGR) (4),
evolution of tapeworm- and fluke-specific
Argonaute (Ago) family, micro exon genes (MEGs)
and PROF1 GPCRs (5), loss of peroxisomal genes
(6), and complete loss of vasa, tudor and piwi genes,
NF-kB pathway, loss of 24 homeobox gene families
(indicated by ‘H’), metabolic proteases and amino
acid biosynthesis (7). In tapeworms, gains and
losses of genomic traits include innovation of
bimodal intron distribution and novel fatty acid
transporters (8), expansion of mu-class glutathione
S-transferases, GP50 antigens and tetraspanins (9),
loss of the molybdopterin biosynthesis pathway,
loss of 10 homeobox gene families (10), fewer
GPCRs and fewer neuropeptides encoded by each
protopeptide (11), and expansion of heat shock
proteins (Hsp) and species-specific antigens (12).
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Stem cell specializations
Extreme regenerative capability and developmental plasticity,
mediated by ever-present somatic stem cells (neoblasts), have made
flatworms popular models for stem cell research29. All multicellular
organisms rely on stem cells for proliferation and growth, so it is
remarkable that tapeworms and flukes appear to lack the ubiquitous
stem cell marker gene vasa (Supplementary Information, section 11).
Instead tapeworms have two copies of another dead-box helicase
(PL10), which we propose may have taken over some of the functions
of vasa (Supplementary Fig. 11.1). Tapeworms and flukes are also
missing the piwi gene subfamily and piwi-interacting tudor-domain
containing proteins. The piwi genes belong to a subfamily of genes
encoding argonaute proteins, and we also found that tapeworms have
a new subfamily of argonaute proteins (Supplementary Fig. 11.2) that
may bind a newly discovered potential small RNA precursor30. Both
piwi and vasa are usually essential in regulating the fate of germline
stem cells in animals, and vasa suppression usually leads to infertility
or death31. These findings suggest that stem-cell-associated pathways
in parasitic flatworms may be highly modified.

Specialization of the tapeworm proteome
We sought to identify novel and expanded gene families in tape-
worms, and found many frequently occurring novel domains
involved in cell–cell adhesion and the formation of the tegument
(Supplementary Information, section 8). For example, several novel
domains are found on the ectodomain of cadherins (Supplementary
Information, section 8), and tapeworms have proportionally more
tetraspanin copies (30–36) (Supplementary Table 12.1) than the
highly expanded repertoires of fruitflies and zebrafish32. The acellular
carbohydrate-rich laminated layer, which coats the outside of Echino-
coccus metacestodes, is a unique genus-specific trait and one of the

few morphological traits that differ between the very closely related
species E. granulosus and E. multilocularis. We identified correspond-
ing species differences in an Echinococcus-specific apomucin family
(Supplementary Fig. 12.1), an important building block of the lami-
nated layer33. One particular copy is highly differentiated between the
two species (non-synonymous to synonymous substitution ratio of
.1) and is the fifth most highly expressed in the metacestode stage
of E. multilocularis (Supplementary Table 5.7). Galactosyltransferases
that probably decorate the apomucins with galactose residues, the
predominant sugar of laminated layer glycans, are similarly diverged33

(Supplementary Information, section 8). Approximately 20% of the
genes are exclusive to tapeworms, and these include many highly
expressed antigen families, such as antigen B, the glycosylphosphatidyl-
inositol (GPI)-anchored protein GP50 (ref. 34), and the vaccine target
EG95 (ref. 35) (Supplementary Table 12.4).

One of the most striking gene family expansions in the tapeworm
genomes is the heat shock protein 70 (Hsp70) family. Phylogenetic
analysis revealed independent and parallel expansions in both the
Hsp110 and the cytosolic Hsp70 clades (Fig. 4). Several examples of
expansions exist at various clades of Hsp70 in other systems, includ-
ing Hsp110 expansions in oysters (to cope with temperature) and in
cancer cells (to cope with proteotoxic stress)36,37. Echinococcus and
T. solium have the highest number of gene expansions in the cytosolic
Hsp70 clade. These expansions seem to have occurred independently
in each species, and have resulted in 22 to 32 full copies in each species
(Echinococcus and T. solium) compared to 6 copies in fruitflies and
2 in humans (Fig. 4). This expanded clade lacks classical cytosolic
Hsp70 features (a conserved EEVD motif for substrate binding and
a GGMP repeat unit), and whereas the canonical cytosolic hsp70 genes
are constitutively expressed in different life-cycle stages, the non-
canonical genes show almost no expression, suggesting a putative
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contingency role in which individual copies of the expanded family
are only highly expressed under certain conditions (Supplementary
Fig. 12.2). At least 40% of E. multilocularis hsp70-like genes are found
within the subtelomeric regions of chromosomes, including the extreme
case of chromosome 8 in which eight copies (including pseudogenes)
are located in the subtelomere (Supplementary Table 12.2). No other
genes are over-represented in these regions. Although Hsp70 proteins
have been found in excretory–secretory products of tapeworms38, it
remains to be determined whether the non-canonical Hsps have a
host-interacting role or whether telomere proximity is important for
their function or expression.

Novel drug targets
Tapeworm cysts are treated by chemotherapy or surgical intervention
depending on tapeworm species, patient health and the site of the cyst.
The only widely used drugs to treat tapeworm cysts are benzimidazoles39

that, owing to considerable side effects, are administered at parasiti-
static rather than parasiticidal concentrations40. Novel targets and
compound classes are therefore urgently needed.

To identify new potential drug targets, we surveyed common targets
of existing pharmaceuticals; kinases, proteases, G-protein-coupled
receptors (GPCRs) and ion channels41. We identified approximately
250 to 300 new protein kinases (Supplementary Table 13.1), and these
cover most major classes (Supplementary Information, section 13). We
also identified 151 proteases and 63 peptidase-like proteins in E. multi-
locularis, a repertoire of similar diversity to S. mansoni, and found that,
like S. mansoni, E. multilocularis has strongly reduced copy numbers
compared to those of other animals (Supplementary Table 13.9). Many
successful anthelminthic drugs target one of several different forms of
neural communication41. We therefore mapped the signalling path-
ways of the serotonin and acetylcholine neurotransmitters, predicted
conserved and novel neuropeptides (Supplementary Table 13.6), and
classified more than 60 putative GPCRs (Supplementary Table 13.2)
and 31 ligand-gated ion channels (Supplementary Table 13.4). A voltage-
gated calcium channel subunit42—the proposed target of praziquantel—
is not expressed in cysts and thus provides a putative explanation for
the drug’s low efficacy.

We searched databases for potential features for target selection,
including compounds associated with protein targets and expression
in the clinically relevant metacestode life-stage, and using this informa-
tion we assigned weights to rank the entire proteomes (Supplementary
Table 13.10). We identified 1,082 E. multilocularis proteins as potential
targets, and of these, 150 to 200 with the highest scores have available
chemical leads (known drug or approved compounds).

Acetylcholinesterases, which are inhibited by mefloquine (an anti-
malarial that reduces egg production in S. mansoni), are high on the
list of potential targets43. However, acetylcholinesterase transcription
in tapeworm cysts is low, possibly limiting their suitability. After
filtering to remove targets with common substrates rather than inhi-
bitors, the top of the list includes several homologues of targets for
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Figure 4 | Heat shock protein 70 expansions in tapeworms. Rooted tree of
Hsp70 sequences from tapeworms and the eight comparator species used in
this study, with additional sequences from baker’s yeast Saccharomyces
cerevisiae, and the Pacific oyster Crassostrea gigas (a non-flatworm example of a
lophotrochozoan with a recently reported Hsp70 expansion). Different Hsp70
subfamilies are shown in different colours. Dotted red lines, E. multilocularis
hsp70 genes that are located in the subtelomeres. EEVD, the conserved carboxy-
terminal residues of a canonical cytosolic Hsp70; ER Hsp70, endoplasmic
reticulum Hsp70.

Table 1 | Top 20 promising targets in E. multilocularis
Target category Target Action Expression Drug Rank

Current targets Tubulin b-chain Cytoskeleton M,A Albendazole 406
Voltage-dependent calcium channel Ion transport - Praziquantel 277

Potential target Thioredoxin glutathione reductase (TGR) Detoxification M,A Experimental compounds 277
Top predicted targets Fatty acid amide hydrolase Bioactive lipid catabolism M Thiopental, propofol 1

Adenine nucleotide translocator Mitochondrial ATP export M Clodronate 2
Inosine 59 monophosphate dehydrogenase Purine biosynthesis M Mycophenolic acid, ribavirin 3
Succinate semialdehyde dehydrogenase GABA catabolism M Chlormerodrin 3
Ribonucleoside diphosphate reductase Purine biosynthesis M,A Motexafin gadolinium 5
Casein kinase II Cell-cycle regulating kinase M,A Experimental compounds 6
Hypoxanthine guanine
phosphoribosyltransferase

Purine biosynthesis M,A Azathioprine 8

Glycogen synthase kinase 3 Multiple signalling pathways M,A Lithium 8
Proteasome subunit Protein degradation M,A Bortezomib 16
Calmodulin Transduces calcium signals M,A Trifluoperazine 19
FK506 binding protein Protein folding M,A Pimecrolimus 19
UMP–CMP kinase Phosphorylases

ribonucleotides
M Gemcitabine 39

Na1/K1 ATPase Ion transport M Artemether 42
Carbonic anhydrase II Acidity control M Multiple (for example,

Methazolamide)
42

NADH dehydrogenase subunit 1 Energy metabolism M Multiple (for example,
Methoxyflurane)

42

Translocator protein Multiple functions M,A Multiple (for example,
Lorazepam)

42

Elongation factor 2 Translation M,A Experimental compounds 54
Cathepsin B Protease M Experimental compounds 55
Dual-specificity mitogen activated protein Signalling, activation of p38 M Experimental compounds 56
Purine nucleoside phosphorylase Purine metabolism M,A Didanosine 63

A, adult; M, metacestode. Rank is sorted starting from the highest overall score; proteins with tied scores have the same rank. For current targets, the rank is only reported from the highest-scoring protein family
member. For full scores and information please see Supplementary Table 13.10.
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cancer chemotherapy, including casein kinase II, ribonucleoside reduc-
tase, UMP–CMP kinase and proteasome subunits (Table 1). The chal-
lenges of inhibiting cancer tumours and metacestodes (particularly
those of E. multilocularis) with drugs are in some ways similar; both
show uncontrolled proliferation, invasion and metastasis, and are
difficult to kill without causing damage to the surrounding tissue.
Therefore, metacestodes may be vulnerable to similar strategies as
cancer; suppression of mitosis, induction of apoptosis and prevention
of DNA replication. In fact, the anthelminthic medicines niclosamide,
mebendazole and albendazole have already been shown to inhibit
cancer growth44.

Conclusion
Tapeworms were among the first known parasites of humans,
recorded by Hippocrates and Aristotle in ,300 BC (ref. 45), but a safe
and efficient cure to larval tapeworm infection in humans has yet to
be found. These genomes provide hundreds of potential drug targets
that can be tested using high-throughput drug screenings that
were made possible by recent advances in axenic and cell culturing
techniques39,46,47. Flatworms display an unusually high degree of
developmental plasticity. In this study, the high level of sequence
completion enabled both gene losses and gains to be accurately deter-
mined, and has shown how this plasticity has been put to use in the
evolution of tapeworms.

METHODS SUMMARY
Genome sequencing was carried out using a combination of platforms. RNA
sequencing was performed with Illumina RNA-seq protocols (for E. multilocu-
laris, E. granulosus and H. microstoma) or capillary sequencing of full-length
complementary DNA libraries (T. solium). The complete genome annotation is
available at http://www.genedb.org. The tapeworm genome projects were regis-
tered under the INSDC project IDs PRJEB122 (E. multilocularis), PRJEB121
(E. granulosus), PRJEB124 (H. microstoma) and PRJNA16816 (T. solium).
Sequence data for T. solium isolate (from Mexico) were used for all orthologue
comparisons, but results relating to gene gains and losses were reconciled against
an additional sequenced isolate from China (unpublished). All experiments
involving jirds (laboratory host of E. multilocularis) were carried out in accord-
ance with European and German regulations relating to the protection of animals.
Ethical approval of the study was obtained from the ethics committee of the
government of Lower Franconia (621-2531.01-2/05). Experiments with dogs
(host of E. multilocularis sample RNA-seq ERS018054) were conducted accord-
ing to the Swiss guidelines for animal experimentation and approved by the
Cantonal Veterinary Office of Zurich prior to the start of the study, and were
carried out with facility-born animals at the experimental units of the Vetsuisse
Faculty in Zurich (permission numbers 40/2009 and 03/2010). A licensed hunter
hunted the fox (host of E. multilocularis sample RNA-seq ERS018053) during
the regular hunting season. Hymenolepis parasites were reared using laboratory
mice in accordance with project license PPL 70/7150, granted to P.D.O. by the
UK Home Office.
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